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Abstract 

Background: Mice exposed to high levels of arsenic in utero are more susceptible to tumors 

such as hepatic and pulmonary carcinoma when they reach adulthood. However, effects of in 

utero arsenic exposure on general physiological functions such as reproduction and metabolism 

remain unclear.  

Objectives: We evaluated the effect of in utero exposure to inorganic arsenic at the EPA 

drinking water standard (10 ppb) and tumor-inducing level (42.5 ppm) on reproductive end 

points and metabolic parameters when the exposed females reach adulthood.  

Methods: Pregnant CD-1 mice were exposed to sodium arsenite (0, 10 ppb, or 42.5 ppm) in 

drinking water from gestational day 10 to birth, the window of organ formation. At birth, 

exposed offspring were fostered to unexposed dams. We examined reproductive end points (age 

at vaginal opening, reproductive hormone levels, estrous cyclicity, and fertility) and metabolic 

parameters (body weight changes, hormone levels, body fat content, and glucose tolerance) of 

the exposed females in adulthood.   

Results: Arsenic-exposed females (10 ppb and 42.5 ppm) exhibited early onset of vaginal 

opening. Fertility was not affected when females were exposed to the 10 ppb dose. However, the 

number of litters per female was decreased in females exposed to 42.5 ppm of arsenic in utero. 

In both 10 ppb and 42.5 ppm groups, exposed females had significantly higher body weight gain, 

body fat content, and glucose intolerance.  

Conclusion: Our findings reveal unexpected effects that in utero exposure to arsenic at a human 

relevant low dose and a tumor-inducing level leads to early onset of vaginal opening and obesity 

in female CD-1 mice.  
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Introduction 

Developmental origins of adult disease are implicated in cardiovascular diseases (Barker 

et al. 1989; Forsen et al. 1999), diabetes (Fall et al. 1998; Vignini et al. 2012), cancers, and 

reproductive disorders such as polycystic ovarian syndrome (Xita and Tsatsoulis 2010; Xu et al. 

2014). The nutritional and physical status of the mothers and their exposure to various 

environmental toxicants during pregnancy are contributing factors to the fetuses’ susceptibility to 

various diseases when the fetuses reach adulthood (reviewed in (Boekelheide et al. 2012). One 

such environmental toxicant is inorganic arsenic. Arsenic is a metalloid naturally found in the 

environment and a common contaminant in the drinking water (Smedley and Kinniburgh 2002) 

and in crops such as rice (Charnley 2014). In the United States, the maximum contaminant level 

of arsenic in the drinking water set by the EPA is 10 ppb (part per billion; EPA-816-K-02-018).  

Many private wells in the US and groundwater in other parts of the world have levels above 10 

ppb (up to > 5000 ppb; reviewed (Smedley and Kinniburgh 2002).  

Gestation is a sensitive period for arsenic toxicity (Devesa et al. 2006; Kozul-Horvath et 

al. 2012).  In humans, chronic exposure to inorganic arsenic was linked to cardiovascular 

disease, diabetes mellitus and cancers of the skin, lung, liver, urinary bladder and prostate 

(Brauner et al. 2014; Moon et al. 2013; Smith et al. 2013; Steinmaus et al. 2014).  In mice, in 

utero exposure to arsenic (in doses ranging from 42.5 ppm to 85 ppm) resulted in an increased 

incidence of lung, liver, adrenal, skin and ovarian tumors when the exposed embryos reach 

adulthood (Liu et al. 2007; Tokar et al. 2010; Waalkes et al. 2004b). The urogenital system is a 

known target tissue for arsenic toxicity as CD-1 mice exposed to arsenic at 85 ppm in utero from 

embryonic day or E8 to 18 exhibited increased incidence of ovary, uterus and adrenal gland 

tumors at 90 weeks of age (Waalkes et al. 2006).   
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Although the detrimental impacts of high level arsenic exposure (ppm range) are well 

documented, it is not clear what the consequence of exposure to levels relevant to normal human 

consumption (ppb range) may be. Exposure to 50 ppb arsenic from fetal life to adulthood 

increased lung tumor incidence in female CD-1 mice (Waalkes et al. 2014), while exposure to 10 

ppb arsenic during pregnancy resulted in liver steatosis and decreased breast milk triglyceride 

levels in exposed C57BL6/J dams, leading to growth deficits in their offspring (Kozul-Horvath et 

al. 2012). In this study, we investigated the effects of 10 ppb arsenic (the maximum contaminant 

level in drinking water, MCL, designated by the EPA, 66 FR 6976) for its relevance to human 

exposure. We also exposed the mice to 42.5 ppm arsenic in the drinking water to define the 

impact of in utero arsenic exposure at a known tumor-inducing level (Tokar et al. 2010; Waalkes 

et al. 2003) on general physiological functions from puberty to 1 year of age. The exposure 

period was restricted to the second half of gestation from E10 to birth (critical window of fetal 

organ formation in mice) and the animals were allowed to develop to adulthood without further 

exposure. We focus on reproductive and metabolic endpoints, which are known to have 

physiological interactions.   

Materials and Methods 

Animals and treatments    

Female CD-1 mice at the age of 8-10 weeks (Charles River, Wilmington, MA) were 

timed-mated with CD-1 males. The day that the vaginal plug was detected was considered as 

embryonic day 0 or E0 and the pregnant females were housed individually in plastic cages using 

Sani Chips bedding (P.J. Murphy Forest Products Corp.). The pregnant females were provided at 

libitum with NIH-31 chow and water processed through a reverse osmosis deionized system. 

Arsenic was below the detection level in the NIH-31 chow (analyzed by inductively coupled 
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plasma atomic emission spectroscopy; Microbac Laboratories).  At E10, pregnant females were 

randomly assigned to one of the following treatment groups (11 pregnant females per group): 1) 

Control, no inorganic arsenic; 2) 10 ppb inorganic arsenic (as Sodium arsenite; Spectrum 

Chemicals, New Brunswick, NJ); or 3) 42.5 ppm inorganic arsenic in the drinking water.  The 

treatment window was from E10 to birth. Pregnant females were allowed to deliver naturally and 

newborn pups were immediately fostered to females that were not exposed to arsenic. In order to 

ensure even growth of the pups, each foster female were given 10 newborns from the same litter.  

Female pups from each litter were assigned to experiments listed in Table 1. The timeline of the 

experiments is outlined in Figure 1. All animals were maintained in standard plastic mouse cages 

(maximum of 5 mice per cage), in temperature controlled rooms, and under controlled lighting 

(12L:12D).  Euthanasia was performed by CO2 inhalation. All animal procedures were approved 

by the National Institutes of Health Animals Care and Use Committee and were performed in 

accordance with an approved National Institute of Environmental Health Sciences animal study 

proposal. All animals were treated humanely with regard to alleviation of suffering.  

Vaginal opening and estrous cyclicity analysis 

Female pups (n=29 for control; n=37 for 10 ppb group, n=35 for 42.5 ppm group) were 

checked at 9AM daily for status of the vaginal opening starting at 18 days of age until the day 

that all females exhibited an open vaginal canal.  Estrous cycle was monitored in females starting 

at 10 weeks of age by vaginal smears taken daily (9 AM) in their cage for 18 consecutive days. 

Vaginal smears were immediately fixed on glass slides (Safetex; Andwin Scientific) and stained 

with hematoxylin and eosin following standard H&E protocols. Phases of the estrous cycle were 

determined based on vaginal cytology as previously described (Jayes et al. 2014) 
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Fertility Study 

When females reached 8 weeks of age, they were placed individually in a continuing 

mating scheme. Breeding pairs of females (Control: n=5; 10 ppb: n=8; 42.5 ppm: n=13) and 

proven, not exposed males (CD-1 males, 10-12 weeks old) were housed together (one pair per 

cage) until they reach one year of age. The parameters analyzed during the 1-year period 

included: days to first litter, days between litters, average number of pups per litter, total number 

of pups produced per female, total number of litters per female, and fertile period (measured as 

the number of days from initial mating to the last litter).  

Measurement of Body weight and body fat composition  

Mice were weighed weekly starting at weaning (21 days) until 15 weeks of age. Weights 

of mice in the fertility study were included only prior to the beginning of the breeding period The 

sample size for body weight measurement up to 8 weeks of age were: 29 for the control, 37 for 

the 10 ppb group, 35 for the 42.5 ppm group. The sample sizes for the body weight analysis from 

8 to 15 weeks of age were: 17 for the control, 25 for the 10 ppb group, and 21 for the 42.5 ppm 

group.   Body fat composition was analyzed by using PIXImus® densitometer (GE Lunar 

Corporation; Waukesha, WI) at 4.5 months of age in mice not included in the fertility study (n=9 

for the control, n=10 for the 10 ppb group; n=11 for the 42.5 ppm group).  

Serum analysis 

Hormone analysis was performed in serum collected at different ages from females that 

were not included in the fertility study. Following euthanasia, blood was collected by either 

cardiac puncture or from the descending vena cava.  Serum (collected from non-fasted females) 

was separated using BD Microtainer™ Plastic Capillary Blood Collectors (BD Diagnostics, 
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Franklin Lakes, NJ) and frozen in -80C. Serum from 21 and 28 days old females was used to 

measure the levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by using 

the Milliplex Map Mouse Pituitary Magnetic Bead Panel (Cat. MPTMAG-49K; Millipore, 

Billerica, MA; control n=29; 10 ppb n=37; 42.5 ppm n=35). Serum from 6 months old females 

was examined for the levels of leptin and insulin by using the Mouse Metabolic Kit (cat # 

N45124A-1) from MSD (Meso Scale Discovery, Gaithersburg, Maryland, USA) following 

manufacturer’s protocols (control n=5; 10 ppb n=7; 42.5 ppm n=6).  Serum from 21 days, 28 

days, 6 months and 1 year old females was examined for the levels of estradiol, 

dehydroepiandrosterone (DHEA), testosterone and progesterone by using the Multi Spot 96 HB 

4-Spot Custom Steroid Hormone Panel (Cat. N45CB-1; Meso Scale Diagnostics, Rockville, MD. 

Data is presented in Supplemental Figure S3 (control n=5; 10 ppb n=5; 42.5 ppm =6). All 

samples were assayed in duplicate.  

Glucose tolerance test  

Five months old females that were not included in the fertility study (control n=7; 10 ppb 

n=10; 42.5 ppm n=11) were fasted overnight and their baseline glucose levels in the serum were 

determined by novaMaxPlus glucometer (Nova Biomedical, Waltham, MA). Mice were then 

given an intraperitoneal injection of D-glucose (2 mg/g body weight) and blood samples were 

collected for glucose measurement at 20, 40, 60, 120 and 180 min after the injection. 

Additional endpoints 

 The body weight analysis for the E18 embryos is presented in Supplemental Figure S1 

(control n=46; 10 ppb n=30; 42.5 ppm n=38).  The ovaries from animals collected at postnatal 

day 21 and 28 and 6 months of age (control n=5-7; 10 ppb n=5-8; 42.5 ppm n=6-8 for each time 
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point) were fixed overnight in PFA and stained with hematoxylin and eosin (H&E). Results are 

shown in Supplemental Figure S2. 

Statistical Analysis  

Sample size for each experiment is listed in Table 1. Data on age at vaginal opening was 

analyzed using log-rank statistics and mixed model analysis of covariance adjusting for weaning 

weight, dam and litter effects. For the estrous cyclicity data, the percentage of time spent in each 

of the four stages (estrus, metestrus, diestrus, or proestrus) among the treatment groups was 

compared using mixed effects analysis of variance, with dam as a random effect to take 

correlations into account. Dunnett’s test was used to compare each treatment group to the control 

group. Body weight and body fat composition were analyzed using a mixed model ANOVA 

using dam as a random effect to take littermate correlation into consideration. Hormonal levels 

and fertility data were compared using ANOVA and Tukey’s multiple comparison tests. P values 

less than 0.05 were considered statistically different. 

Results 

The goal of the study was to investigate how in utero exposure to 10 ppb (EPA MCL in 

drinking water) and tumor-inducing (42.5 ppm; (Waalkes et al. 2003; Waalkes et al. 2004b) 

levels of arsenic in drinking water affects reproductive and metabolic functions when the 

exposed animals reach adulthood. We restricted the exposure period to the second half of 

gestation to investigate specifically the impact of arsenic on organ formation. Pregnant CD-1 

females exposed to arsenic showed no effects of treatment on body weight gain and number of 

pups born per litter (Figure S1). The weights of the fetuses at E18 were similar among treatment 

groups with the exception of 10 ppb group, which had a significant increase in body weight 
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(Figure S1). The pups born from exposed females appeared healthy without any signs of stress or 

malformation and were able to develop to adulthood for analyses of reproductive and metabolic 

endpoints.  

Impacts of in utero arsenic exposure on reproductive functions 

One of the first signs of reproductive development in female mice is the opening of the 

vagina, an external indicator of the onset of puberty (Hansen et al. 1983). Vaginal opening was 

first detected in control females at 23 days of age and by 30 days, all control females exhibited 

open vagina (Figure 2A). In contrast, pups exposed to arsenic in utero (both 10 ppb and 42.5 

ppm groups) exhibited vaginal opening as early as 21 days (Figure 2A). Compared to control 

with 26.5 ± 0.3 days of mean age at vaginal opening, the arsenic-exposed females had 

significantly early onset of vaginal opening (23.8 ± 0.2 days for 10 ppb group and 24.5 ± 0.3 

days for 42.5 ppm group in Figure 2B).  Onset of vaginal opening in mice is known to positively 

associate with body weight (Hansen et al. 1983). The pups exposed to either 10 ppb or 42.5 ppm 

in utero displayed higher body weights at weaning (21 days of age) compared to controls (p< 

0.001; Figure 2C). Significant negative correlations between body weight and age at vaginal 

opening were detected in controls (Figure 2D, r2= -0.51; p=0.004) and 42.5 ppm group (r2=-0.62; 

p<0.001). However, no significant correlation was observed in the 10 ppb group (r2= 0.032; 

p=0.85), suggesting that exposure to 10 ppb in utero causes early onset of vaginal opening 

independent of body weight.  

We next examined the level of gonadotropins (LH and FSH), pituitary-derived hormones 

that trigger reproductive development of the females. At 21 days, serum level of LH was 

significantly elevated in females exposed to 10 ppb of arsenic in utero compared to the controls 
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and this effect is not observed at 28 days (Figure 3A & 3B), whereas no differences was detected 

in females exposed to 42.5 ppm arsenic in utero at either 21 or 28 days of age. Serum FSH level 

was not significantly different between the control and treatment groups at either time point 

(Figure 3C & 3D). 

Progression of the estrous cycle is another endpoint indicative of proper reproductive 

development.  We monitored the estrous cycle in exposed females for 18 consecutive days 

(roughly 3-4 cycles) when they reached 2.5 months of age.  The percentage of the time that the 

female spent in each stage of the estrous cycle (P: Proestrus, E: Estrus, M: Metestrus, and D: 

Diestrus) was not statistically different among the control and treatment groups (Table 2). 

To test whether fertility was affected by in utero exposure to arsenic, females were 

housed with fertile CD-1 males from 8 weeks to 1 year of age, and examined for fertility 

outcomes. We found no differences between the control and treatment groups on number of days 

to first litter, average days between litters, and average number of pups per litter (Table 3). While 

no differences were found between the control and treatment groups in the total number of litters 

born per female, we detected a significant difference between the 10 ppb and 42.5 ppm groups 

with less litters born, less pups per female, less total number of pups born and a shorter fertile 

period (measured as the number of days from initial mating to the last litter) in the 42.5 ppm 

exposed group compared to the 10 ppb exposed group (Table 3). No detectable differences were 

observed in ovarian morphology at 21 days, 28 days and 6 months of age between control and in 

utero exposed females (Figure S2).  Although some changes were detected in the pattern of 

circulating sex steroid levels at 6 month and 1 year of age (Figure S3), these changes were not 

statistically significant. In summary, in utero exposure to arsenic at either 10 ppb or 42.5 ppm 

resulted in early vaginal opening.  Elevated serum LH was also observed in females exposed to 
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10 ppb arsenic in utero suggesting the animals may have enter puberty precociously.  Despite 

these reproductive anomalies, fertility of the exposed females was not significantly different 

from controls.  

Impacts of in utero arsenic exposure on body weight, body composition, and glucose 

metabolism 

The increased body weight during puberty (Figure 2) prompted us to ask whether this 

weight increase continues later in life and affects metabolism. We followed body weight changes 

from 3 to 15 weeks of age in females exposed to arsenic in utero (Figure 4A). The body weights 

of both 10 ppb and 42.5 ppm treatment groups were significantly higher than the controls at all 

time points, particularly after 5 weeks of age. The percentage of fat vs. lean mass measured by 

Piximus Scans in adult females at 4.5 months of age was significantly higher in both 10 ppb and 

42.5 ppm groups (Figure 4B, 10 ppb: 30.6 ± 3 %; 42.4 ppm: 34.1 ± 2% vs. Control: 22.3 ± 2%; 

P< 0.05).  In addition to higher body weight and body fat content, the 10 ppb and 42.5 ppm 

groups also showed signs of impaired glucose tolerance.  Forty minutes following glucose 

challenge, the serum glucose level in the control group started to decline whereas the level 

remained significantly higher in the 10 ppb and 42.5 ppm groups and did not start to decline until 

the 60 minute time point (Figure 4C). It is worth noting that serum glucose levels before the 

challenge (time zero) and 180 min after the challenge were not different among groups, 

indicating that the treated animals were not diabetic.   

At 6 months of age, the body weights of females exposed to 10 ppb arsenic in utero 

remained higher than controls (Figure 5A; 41.9 ± 2.7 vs. 34.4 ± 2.3 g respectively; P<0.05). 

Serum levels of leptin and insulin, two hormones associated with metabolic syndrome and 

obesity (reviewed by (Fellmann et al. 2013), showed a tendency to be elevated in the 10 ppb 
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group compared to control  (Figure 5B & 5C, p=0.11 for leptin and p=0.06 for insulin) and were 

statistically significant between control and 42.5 ppm (Figure 5B & 5C, p=0.05 for leptin and 

p=0.03 for insulin). In summary, females exposed to arsenic in utero at 10 ppb and 42.5 ppm 

became obese starting in young adulthood, probably due to an increase in body fat deposition. 

Furthermore, exposed females exhibited glucose intolerance compared to the controls.  At 6 

months of age, the increased body weights of exposed females were still apparent with 

tendencies of higher levels of circulating leptin and insulin.  

Discussion 

Most of the animal studies on the health impact of arsenic exposures focus primarily on 

the high doses (ppm level) with exposure period in the adulthood. Analyses of arsenic exposure 

during fetal life indicate that the exposed mice are more susceptible to tumors than controls 

(Tokar et al. 2010; Waalkes et al. 2004a; Waalkes et al. 2006; Waalkes et al. 2007). However, 

the consequence of exposure on other physiological functions remains unclear. In our study, we 

investigated the impact of in utero exposure to EPA drinking water standard (10 ppb) and a 

tumor-inducing (42.5 ppm) level of arsenic on reproductive and metabolic functions when the 

exposed females reach adulthood. We focused specifically on the window of organ formation 

(E10 to birth).  Unexpectedly, both 10 ppb and 42.5 ppm exposure resulted in early vaginal 

opening, an indicator of puberty, and increased body weight compared to controls.  The pattern 

of increase in body weight and fat composition is similar to the changes observed in the high fat 

diet-induced obesity model in CD-1 female adult mice (Gao et al. 2015; Lei et al. 2007).  

Therefore we consider the exposed females in our study obese. While the obese-inducing high 

fat diet was introduced in the adulthood, in our study the potential obesity-inducing agent 

(arsenic) was only given during fetal life. These observations, along with a tendency for an 
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increase in circulating levels of leptin and insulin, suggest that exposure to arsenic during the 

developmental window from E10 to birth in utero, even at levels as low as 10 ppb, could be a 

contributing factor for obesity and metabolic syndrome in adult female mice.  

To our knowledge, effects of in utero exposure to low levels of arsenic on age of vaginal 

opening in mice have never been reported. However, arsenic exposure, particularly at the ppm 

level, has been linked to delayed puberty in other species. In rats, exposure to 10 mg/kg of 

arsenic in the drinking water from 12 days of age to puberty led to delayed sexual maturity 

(Reilly et al. 2014).  Delayed puberty was also observed in rats exposed to 3 ppm arsenic in utero 

to 4 months of age (dams were exposed to arsenic prior to breeding and throughout gestation) 

(Davila-Esqueda et al. 2012). These observations suggest that arsenic exposure at high levels 

during the peripubertal period may delay reproductive maturity or onset of puberty.  The 

differences in dosing level, time of exposure, and species could contribute to the opposing 

outcome in our study.  

Although early onset of vaginal opening was observed in both 10 ppb and 42.5 ppm 

groups, the mechanism underlying this phenotype appears to be different. The negative 

correlation between body weight and age at vaginal opening was maintained in both control and 

42.5 ppm groups as expected. However, the correlation between body weight and onset of 

vaginal opening was not observed in females exposed to 10 ppb. The lack of correlation between 

body weight and onset of vaginal opening in the 10 ppb group indicates that increased body 

weight probably does not contribute to precocious puberty at this exposure level. We speculate 

that our in utero exposure paradigm could have a specific impact on the development of the 

hypothalamic-pituitary-gonadal axis.  Age of vaginal opening and levels of circulating LH have 

been used as indicators of puberty in mice (Risma et al. 1997). Elevated serum LH, which is 
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positively linked to precocious puberty (Risma et al. 1997), was observed only in the 10 ppb 

exposed females. In addition to LH, ovary-derived estrogen is also involved in onset of vaginal 

opening. The levels of estrogen during the prepubertal period vary from day to day with a 

significant decrease on the day of vaginal opening and an increase 2 -3 days afterwards 

(Safranski et al. 1993).  We examined the serum estradiol level at 21 and 28 days of age 

(regardless of status of vaginal opening) and found that the majority of animals had undetectable 

levels of estradiol. Therefore we were not able to establish a connection between estrogen level 

and early onset of vaginal opening. Although under our experimental conditions we were unable 

to detect fertility differences between the control and treatment groups, we observed that females 

in the 42.5 ppm group had fewer litters, fewer pups per litter and a shorter fertile period. These 

data suggests that exposure to the 42.5 ppm has a more dramatic negative effect on fertility 

compared to 10 ppb exposure. More studies are needed to better understand this phenotype.   

The arsenic-induced weight gain was not restricted to prepubertal mice in our study. The 

significant weight increase continues in adulthood, accompanied by higher body fat content in 

both 10 ppb and 42.5 ppm groups compared to controls. One of the contributing factors for 

obesity in adulthood is low birth weight (Beauchamp et al. 2015). To determine whether the 

weight increase in exposed female is the result of low birth weight, we measured body weights 

of exposed embryos at E18, one day before birth. We found that following exposure to 10 ppb, 

body weight of E18 fetuses was actually increased compared to control and no differences were 

detected between controls and 42.5 ppm exposed embryos (see Supplemental Figure S1C). These 

data suggest that the obesity observed in the exposed mice is not related to lower birth weights. 

A study that tested a single exposure of arsenic (5 mg/kg) at E8 in C57BL6/J mice showed a 

significant increase in fetal body weight at E18 (Machado et al. 1999). Interestingly in another 
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study, the birth weight of C57BL6/J female pups exposed to 10 ppb arsenic from E8 to birth was 

not different from controls and no differences in weight were observed when they reached 8 

weeks of age (Ramsey et al. 2013b). Furthermore, C57BL6/J mice exposed to 10 ppb arsenic 

during the entire pregnancy exhibited no difference in body weight gain at weaning compared to 

the control (Kozul-Horvath et al. 2012). The different response to 10 ppb arsenic exposure in 

utero between CD-1 (our study) and C57BL6/J strains (Kozul-Horvath et al. 2012; Ramsey et al. 

2013a) highlights the potential involvement of genetic backgrounds.  Numerous studies have 

reported the differences among different mouse strains in sensitivity of exposures to various 

chemicals (Bowen et al. 2010; Kimura et al. 2005; Robinson et al. 2010; Yan et al. 2011). It is 

generally accepted that C57BL6/J and related strains exhibit a higher sensitivity to arsenic and 

cadmium exposures based on developmental malformations (Hovland et al. 1999; Machado et al. 

1999; Ramsey et al. 2013a). The differences in the window and route of exposure along with 

genetic backgrounds could contribute to variability of the outcomes following in utero arsenic 

exposure.  

In addition to the incidence of obesity, glucose intolerance was observed in female mice 

exposed to 10 ppb and 45.5 ppm arsenic in utero. It was reported that adult mice exposed to 

arsenic at 50 ppm or higher developed impaired glucose tolerance (Hill et al. 2009; Paul et al. 

2011).  A recent study concluded that exposure of adult mice to 3 mg/L (3 ppm) sodium arsenite 

for 16 weeks resulted in altered glucose metabolism and pancreatic function (Liu et al. 2014).   

In human adults, chronic arsenic exposure (greater than>100 ppb) was associated with diabetes 

(Islam et al. 2012; Tseng et al. 2000).  Type 2 diabetes was also correlated with low to moderate 

levels of arsenic exposure (Navas-Acien et al. 2008). Under our experimental conditions, the 

significantly higher body weights observed in the 10 ppb exposed animals were maintained 
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through 6 months of age (a trend was observed for the 42.5 ppm exposed animals). A trend for 

higher circulating levels of leptin and insulin was also detected in the arsenic exposed groups.  

We suspect that under our experimental conditions, in utero arsenic exposure could cause 

permanent alteration in lipid metabolism, leading to obesity phenotypes such body fat increase 

and glucose intolerance (Cheng et al. 2011; Kozul-Horvath et al. 2012). Obesity is associated 

with leptin resistance (reviewed in (Myers et al. 2010) and the trend to higher circulating levels 

of leptin in arsenic-exposed mice could be a potential mechanism that deserves further 

investigation.  

Although our findings reveal perturbation of puberty onset, obesity, and glucose 

metabolism induced by in utero arsenic exposure, the mechanism of arsenic action underlying 

these changes remains unknown. Most effects of arsenic exposure in adults are attributed to the 

activation of gene pathways that increase reactive oxygen species and oxidative stress (Ghatak et 

al. 2011; Kitchin and Ahmad 2003; Lu et al. 2014). Changes in DNA methylation were reported 

in C57BL6/J adult mice in the lung following exposure for 90 days to 50 ppm arsenic 

(Boellmann et al. 2010).  Changes in methylation status in liver were also found in adult 

C57BL6/J mice after 5 months of exposure to 50 ppm arsenic in drinking water (Nohara et al. 

2011). Methylation changes in human cord blood have also been associated with in utero arsenic 

exposure (Koestler et al. 2013). Given that the exposure window of our study is restricted to the 

second half of fetal life, the adult onset of perturbations could derive from epigenetic changes as 

a consequence of in utero arsenic exposure. These epigenetic changes may have impacts at the 

cellular and/or systemic level that alter metabolism and hormone production.    

The most interesting aspect of our results is that in utero exposure to 10 ppb arsenic, the 

EPA approved drinking water level, causes similar or even more detrimental effects on body 
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weight and age of vaginal opening than the tumor-inducing 42.5 ppm level. In CD-1 mice 

arsenic appears to have different cellular effects dependent upon the dose and time of exposure. 

Further studies are needed to understand the potential mechanisms underlying the action of 

arsenic in a dose-dependent manner.  
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Table 1: Figure assignment, endpoints of measurement, and sample sizes 
 
Figure Endpoints Sample size 
Figure 2 Vaginal opening detection from 18-29 days of age  

Body weight measurement to 8 weeks of age 
Control: 29 
10 ppb: 37 
42.5 ppm: 35 

Figure 3 LH and FSH and Estradiol measurement  Control: 5-6 
10 ppb: 5-6 
42.5 ppm: 4-8 

Figure 4A Body weight measurement from 9 to 15 weeks of age Control: 17 
10 ppb: 25 
42.5 ppm: 21 

Figure 4B Body fat composition measurement at 4.5 months of age Control: 9 
10 ppb: 10 
42.5 ppm: 14 

Figure 4C Glucose tolerance assay at 5 months of age  Control: 7 
10 ppb: 10 
42.5 ppm: 11 

Figure 5 Body weight and measurement of leptin and insulin at 6 months of 
age 

Control: 5 
10 ppb: 7 
42.5 ppm: 6 

Table 2 Analysis of estrous cyclicity for 18 days starting at 10 weeks of age Control: 17 
10 ppb: 22 
42.5 ppm: 21 

Table 3 Fertility analysis: number of litters, total number of pups per litter, 
total number of pups per female, days between litters, and fertile 
period  

Control: 5 
10 ppb: 8 
42.5 ppm: 13 

Sup. Figure 
1A&B 

Maternal weight gain and litter size Control: 7 
10 ppb: 7 
42.5 ppm: 7 

Sup. Figure 1C Fetal body weight at E18 Control: 46 
10 ppb: 30 
42.5 ppm: 38 

Sup. Figure 2 Ovarian histology at 21 days, 28 days, and 6 months of age Control: 5 
10 ppb: 7 
42.5 ppm: 6 

Sup. Figure 3 Serum level of estradiol, testosterone, progesterone, and DHEA at 
6 months and 1 years of age 

Control: 5 
10 ppb: 7 
42.5 ppm: 6 
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Table 2: Percentage of the time that the female spent in each stage of the estrous cycle 

Endpoint Controls  (n=17) 10 ppb (n=22) 42.5 ppm (n=21) p-value 

% in estrus  28.1 ± 2.9 28.8 ± 2.9 27.8 ± 2.2 0.962 

% in metestrus  31.0 ± 1.4 30.0 ± 2.0 25.9 ± 1.8 0.114 

% in diestrus 20.6 ± 1.8 24.7 ± 2.2 28.0 ± 2.7 0.092 

% in proestrus 20.3 ± 1.4 16.4 ± 1.8 18.2 ± 1.5 0.267 
 
Numbers represent averages ± standard error.   
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Table 3: Effects of in utero arsenic exposure on fertility of adult females 

Treatment Days to 1st 
litter 

 Days 
between 

litters 

Number of 
pups per 

litter 

Total pups 
produced per 

female 

Total 
number of  
litters per 

female 

Fertile 
period 
(days) 

Control 
(n=5) 21.6 ± 0.40 29.04 ± 1.44 13.65 ± 0.93 112.80 ± 12.04 9.00 ± 1.30 254.4 ±18.6 

10 ppb 
(n=8) 22.00 ± 1.62 28.55 ± 1.53 11.03 ± 1.08 124.88 ± 8.56* 10.38 ± 0.94* 302.3 ± 16.5* 

42.5 ppm 
(n=13) 23.31 ± 1.01 31.65 ± 1.59 12.32 ± 0.43 73.77 ± 13.38* 5.77 ± 1.04* 186.1 ± 30.62* 
 
Numbers represent averages ± standard error.  
* represents significant differences between 10 ppb and 42.5 ppm groups with p<0.05. There are no 
differences between treatment groups and the Control. 
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Figure Legends 

Figure 1: Experimental design: pregnant CD-1 females were exposed to 0 (control), 10 ppb, or 

42.5 ppm of sodium arsenite in drinking water from E10 to birth. At birth, pups were fostered to 

females that were not exposed to arsenic. Vaginal opening was checked daily starting at 18 days 

of age and the body weight was recorded weekly for 15 weeks. At 8 weeks of age, female pups 

were set up for fertility test or analyzed for metabolic endpoints. Sample size for each 

experiment is listed in Table 1.  

Figure 2: Effects of in utero arsenic exposure on onset of vaginal opening and body weight. (A) 

X axis represents the day of vaginal opening. Y axis represents the percentages of animals with 

open vagina. (B) Y axis represents the average age ± SE when vaginal opening was observed. * 

indicates P<0.05. (C) Average body weight at 21 days of age (average age ± SE); (D) lines 

represent correlations between body weights (BW) and onset of vaginal opening (VO).  

Figure 3: Effects of in utero arsenic exposure on levels of serum LH (A & B) and FSH (C & D) 

at 21 and 28 days of age (mean ± SE). * indicates P<0.05 compared to control group.  

Figure 4:  Effects of in utero arsenic exposure on (A) body weight from 3 weeks to 15 weeks of 

age. * indicates significant difference (P< 0.05) between the control and 10 ppb group and + 

indicates significant difference (P<0.05) between control and 42.5 ppm group. (B) percentage 

body fat. * indicates significant difference (P<0.05) compared to control, and (C) glucose 

tolerance analysis. Y axis represents serum glucose levels (mean ± SE, * indicates P<0.05 

compared to control).   

Figure 5:  Effects of in utero arsenic exposure on (A) body weight, (B) serum leptin, and (C) 

serum insulin level at 6 months of age (Means ± SE; * indicates P< 0.05 compared to control).  
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Figure 5 
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